ICAM-3 activation modulates cell-cell contacts of human bone marrow endothelial cells.
نویسندگان
چکیده
The Ig-like cell adhesion molecule ICAM-3 is mainly expressed on human leukocytes and is involved in cell-cell interactions. Its expression on endothelium is observed during disorders such as Crohn's disease and in solid tumors. We found low but detectable expression of ICAM-3 on VE-cadherin-expressing cells from primary human bone marrow aspirates, i.e. endothelial cells, and on primary human endothelial cells from cord blood. Also, immortalized human umbilical cord endothelial cells and human bone marrow endothelial cells showed ICAM-3 expression. However, its function on human endothelium is not known. Surprisingly, activation of endothelial ICAM-3 by crosslinking with specific antibodies resulted in a drop in the electrical resistance of bone marrow endothelial monolayers. In line with this, immunocytochemical analysis showed a loss of endothelial cell-cell contacts after ICAM-3 crosslinking in HBMEC. Detailed biochemical analysis showed an association of moesin and in a later stage ezrin with ICAM-3 upon crosslinking in HBMEC. Moreover, ICAM-3 crosslinking induced the production of reactive oxygen species (ROS), which are known to be involved in the control of endothelial cell-cell contacts. In conclusion, we showed that ICAM-3 is expressed on human bone marrow endothelial cells and controls endothelial integrity via ROS-dependent signaling.
منابع مشابه
Effect of Tribulus Terrestris L. on Expression of ICAM-1, VCAM-1, E-Selectin and Proteome Profile of Human Endothelial Cells In-Vitro
Background: Atherosclerosis is a chronic inflammation that interferes with blood arteries functions due to the accumulation of low density lipids and cholesterol. Objective: To investigate the effect of aqueous extract and saponin fraction of Tribulus terrestris L. (TT) on the proteome and expression of intracellular adhesion molecule-1 (ICAM-1), vascu...
متن کاملCapillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells
Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...
متن کاملHuman Mesenchymal Stem Cells and Their, Clinical Aapplication
There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...
متن کاملMultiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α
Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...
متن کاملMigration of human hematopoietic progenitor cells across bone marrow endothelium is regulated by vascular endothelial cadherin.
The success of stem cell transplantation depends on the ability of i.v. infused stem cells to engraft the bone marrow, a process referred to as homing. Efficient homing requires migration of CD34(+) cells across the bone marrow endothelium, most likely through the intercellular junctions. In this study, we show that loss of vascular endothelial (VE)-cadherin-mediated endothelial cell-cell adhes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vascular research
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2004